If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+26x-36=0
a = 4; b = 26; c = -36;
Δ = b2-4ac
Δ = 262-4·4·(-36)
Δ = 1252
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1252}=\sqrt{4*313}=\sqrt{4}*\sqrt{313}=2\sqrt{313}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-2\sqrt{313}}{2*4}=\frac{-26-2\sqrt{313}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+2\sqrt{313}}{2*4}=\frac{-26+2\sqrt{313}}{8} $
| 4x²-26x+36=0 | | -3=4w-8 | | 0.4x-0.8(5-x)=5.2 | | x/(x^2+64)=0 | | 1/2x-1/3=5/3 | | 5x+22=28 | | 3x^2+147=0 | | 9v-2v=42 | | 21-(5x-(3x-1))-x=5x-12 | | 3a+4-a=14 | | -7v+4(v-4)=-10 | | 11/17=x/10 | | -2(u-6)=3u+2 | | 5x+3/2=6-2/3x | | (m-1)=8/(m+1) | | 2(w-3)-9=-2(-8w+6)-8w | | 3^x+1=5^x | | 20=125+l | | 7x2+6=0 | | 4-3y=3- | | 2x=4/3=7 | | f(-2)=8+3(-2)^2 | | 6a-8=4a+6=2a | | 20=l/18 | | 45=180/t | | x²+8x+20=0 | | 7+3x=2+2 | | -9x²+900=0 | | 9x²+18x+3=0 | | 2(3x)+8=83 | | 0.5x²-24=0 | | x^2+68x-1344=0 |